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ABSTRACT

In this paper we establish the Haar and Walsh systems on a triangle.

These systems are complete in L 2(A). The uniform convergence of the Haar-

Fourier series and the uniform convergence by group of the Walsh-Fourier

series for any continuous function are proved.
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SIGNIFICANCE AND EXPLANATION

A number of papers have been concerned with developing the theories of

discontinuous orthonormal systems and their applications. In particular, the

Haar and Walsh systems are presently the most important examples of

nonsinusoidal functions, and have proved most useful in communication.

Some authors have studied the properties of approximation from the

mathematical point of view. It seems interesting and helpful for both theory

and practice to investigate the Haar and Walsh functions for a multivariate

setting. In fact, many signals in communications and other functions are of

several variables (for instance, TV signals have two space variables and the

time variable). If the domain of definition of the system is tensor product,

* ~ then the existing systems are readily extended to several variables.

SThe problem is how to construct an orthonormal system on a triangular

domain in the plane, or more generally, on a simplex in n-dimensional space.

This paper defines the Haar and Walsh system on a triangle domain, proves the

orthogonality and completeness in L2. Also the uniform convergence for the

Haar-Fourier series, uniform convergence by group for the Walsh-Fourier series

are studied. All of these results can be generalized easily to n

. dimensions. or
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ON THE HAAR AND WALSH SYSTEMS O9 A TRIANGLE

Y. Y. Feng and D. X. Qi

1. Introduction

No doubt, it in interesting and useful to study multivariate Haar and Walsh functions

either in theory or in practice. If we investigate on a domain which can be considered a

* Cartesian product, then the functions are readily extended to several variables from the

one variable. Setting by the tensor product construct Harmuth has shown those kinds of

multivariate systems in his book 15] and pointed out the applications in communication.

In this paper we attempt to focus on a triangle, or more generally on a simplex in n-

dimensional space. We were unable to find any paper about it. Perhaps it puzzles some

people temporarily.

The main contribution of this paper is to establish the Haar and Walsh system with two

'-, variables on a triangle. We prove their orthonormality and completeness in Hilbert space

L2 . Moreover, the corresponding Haar-rourier series and Walsh-Fourier series for any

continuous function are uniformly convergent and convergent by group respectively.

It is easy to generalize these results to the n-dimensional simplex. For simplicity

we will discuss only the two-dimensional triangle.

Now we should explain some preliminaries and notations.

The Haar functions on (0.1] are defined as follows:

X0 (t) :- I for 0 4 t 4 1
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for 2k- 2 2k 1fif r,---'- - q t < '
2n+I n*1

x()t -2-2, for Lk- t < (112 2
2n+ fr - i 2k (1.1).

0, elsewhere in [0,1]

k - 1,2,3,...,2n, n - 1,2,3....
I

The Walsh functions on [0,1] consist of the following onest

W0 (t) I- I for 0 4 t 4 1

I for0 t<
Wl(t) :1 2 (1.2)

-1 for 1 < t 4 1

W,()(2t), for 0 (t <w(2k-1)t2
"in+1 (): (-1)k+lw k)(2t - )•for -1 < t 4 1•

Wn )(2t), for 0 4 t <

W(2k)(t) :- 1
(-1)kW(k)(2t - 1), for - < t 1 1

n 2

k - 1,2 ,3,..., 2 n, n - 1,2,3,...,

Some detailed investigation of the Haar and Walsh systems can be found in [I], [3],

4 (5].

In order to generalize the Haar and Walsh systems to the two-dimensional case we

should explain our representation in this paper. The Cartesian coordinates are not very

convenient for triangular elements, and a special type of coordinate system called area

coordinates should be used.

Referring to Figure I it is seen that the internal point P will divide the triangle

ABC into three smaller triangles, and depending on the position of the point P, the area

of each one of the triangles PAS, PBC, PCA can vary from zero to 1AI, which is the area
a b c

of the triangle ABC. In other words, the ratiosIKI' ,- and T will take up any

value between zero and unity. Here a, b, c are the area of triangles PBC, PCA, PAS

respectively.
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A (x, y1)

C ~ ~ - (x Vy 3)
Sa

0) x

Figure I

These ratios are called area coordinates, and they are defined by -ir

:.b A .c
2 1T1 3 lWr

it is easy to see that

- y Y2 1 1 3

if two points P and Q are in two similar triangles respectively, and have the same

area coordinates, then we denote them by P -Q.
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2. An orthonormal sequence X on a triangular domain

Suppose A (or AABC) is any triangle on a plane and IA - 1 is the area of the

AASC. If D, 3, r are midpoints of AE, BC, CA respectively, connecting DR, 9pe FD,

we divide the A into four similar small triangles AADF, ADBE, AFEC, AKFD. We call them

A1 , A2 , A3, A4  respectively.

We define the sequence X as follows:

X0(P) :- I for P A A

I for P 9 6 U a4
r 1

x M(P)

' 0 for p e A 3 u A 4

() 1r for PA e A ,

-0 for P e A U A
3 4

r( 2_ for P e A 1 ,

x() - forPeA

4 ,

"0 for P eA 1 U A2 ,

-. . ..1.. ...

J- 2X.(Q) for P e Aj.1
4 -- ~3j+i)( ) -

( i (P) (2.1)

0 for P e A\&

where Q e A, Q P, j - 0,1,2,3, i - 1 ,2 ,..., 3 -4n'2 n - 2,3,...

At a point of discontinuity, let the value of these functions be the average.

Now we consider the orthogonality of the sequence X. We prove the following theorem.

Theorem 1. The sequence X defined by (2.1) is orthonormal.

Proof. At first, it is easy to check that when n ( 2 the sequence (XnJ )} is

orthonormal. We suppose that the theorem holds for n N 1. ror 2 4 m 4 N + Is

J = 0,1,2,3s i1 = 1,2,...,34 N1 12 - 1,2,...,3-4 m, by (2.1) and induction
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hypothesis. ye get

f "H 1  (P)X.~ (P)dP 46 (131+ 1  31+2)J'2 +1 YV (Q)X1_ (Q)dP

f () (~ d

Jl10 2 A 'ff XM-

It is easy to verify that

(3j+1 ) U 2(31+i1)

6 +, (P)X I (P)dp f YV+ -Px~p 0

Therefore the theorem holds for n V k + 1. and this finishes the induction.



* 3. Convergence properties

The triangle A has been divided into tour similar smaller triangles L

(1 1,2,3,4). Now set

A ~= A i - 1,2,3,4)

For each A 1 ',, we divide it into four similar smaller triangles in the same way as

we did before. We order them ae A 1 A2 2 .. A 1  such that

A1,1- 2,41i 2,41-1 UA2,41-2 UA2,41-3' 1 - 1,2,3,4

We continue this process. For any n we get a equence A , .. such that

An-10i -An,41 n,41-I n,41-2 UAn,41-3'

1 1,2 ,3 ,.. *,4n-1, n - 1,2,3 ....

Define a function sequence (f ) on the A2

f ( - I for PeA,

f11p) I for P e 1{0 for P 9 A\A 1 1  1 1,2,3,4

I for P eA
f n(P) 2- ni(3.1)

n~i 10 for P.A\AMA

i - 1,2,3,...,4n, n -1,2,3, ...

It is obvious that the sequence (f ni is orthogonal.

n,4'

Thus

dim Mn-4

For convenience, sometimes we use notation

: 4 n- + ,i- ,~ 3 *n (3.3)
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sot

Hn t- span(XlDX2 1...IXn)

It is clear that

H4n- n  (3.4)

since H4n C and dim 4n- dim Mn - 4 n
.

We define

L 2(A) .- {ff1 f
2
do < - I

and

Nf
2
: . f f

2
dO

2 A

Then the Fourier series of a given function F e L 2(A) in terms of the function sequence

{Xn} is

r - , ax, (3.5)
i,-I ---1

with

a . f F(P)xi(P)dP
A

Let

PnF :- dixi(P) (3.6)
i-1

be the n-th partial sum of the series (3.5).

From the orthogonality of sequence CX,) we know that PnF is the beet L-

approximation to F from Hn . Hence it is convergent to F if F is in L2 (A), since

Hn  is dense in L2 (A). Thus we get the followinc theorem.

Theorem 2. If F e L2 (A), then

lim IF - P 0 

n+t n2

-7-
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In order to study the uniform convergence we let

C(A) t- (fif is continuous on A)

and

Ifl .- max I P(P)
PeA

For F e c(A) we define

PMi) f= FX do - + f FX~1 do + 1 + f F~n do )nO
(3.7

Set

Ko(P.Q) := Xo(P)Xo(Q), (for PQ e A)

%(J)i(P,Q) :- X (P)x0CQ) + (1) W () + *.+ 0) () 0 () ~ (3.8)

n-1j 1 1,2,...,34 n n - 1,2,...

Thus

P(i)F(P) -f (i)(P,Q)F(Q)dQ(39nA

Let A = (ajj) (ieJ - 1,23#...,4n) be any 4n x 4" Cn ( 1,2,...) matrix and

G(P,Q) be any function defined on A x A.

The notation G(P,Q) A means that the value of G(P,Q) is ailj when P e a n,i

Q e Ani . It leads to the following relationship:

1 1 1

X0 (P)X0 (Q) * 00 1

'I 1 1 1 1

1 1 1 -

1 1 -1 -1

-1 -1 1 1

. -t -1 1 1 (3,tO)

* n ".'-n ..... .



2 -2 0 0

• -2 2 0 0

(2) (2) 2 2 0

X1  PX 1  (Q) 0 " 0 0 0 0

0 0 0 0
o o 0 0

0 0 0 0 -

1 1 3 ,  0 0 2 -2

0 0 -2 2

In order to write those more shortly, we usse the notation

A1
0

AL2
diaq blockl(Al, 20....,Am ) s- •2 •3.1

0 A

where A 1 is square submatrix.

Using (3.11) we get 2 2 2 0 i o

I KXl)(P,Q) +- a 0 + 01 =dag block,,
K1 (PQ 0"2 2 2 2

K(
2
1(pQ) + 02 diag [ ,))

Kx3)(P.Q) 00 + 02 + 03 - diaq block(4,4,4,4)

where diag block(4,4,4,4) -
4
I4,1 n  is n x n identity matrix. We denote the m x m

zero-element matrix by Om  below.

Since

X2  (P)X 2  (Q) diag(401 O4 0 4 ,0 4 ), 1 1,2,3)

we get

-9-



+4'(,Q diag block(4 ~ )414#41 .41
2 J0 vi 4

434+I)(p,Q) .. diag bloak(4 2 1,64 t ~ ~4P .41 4)
J.

iwo

6+tll~ 4) diag block(42 141 4
2!4 ,4 ! o.a4 )

and

K( 9 +i)(PQ) 4" diag block(al 144
2  a4 2

!4 ,4 I j), 1i 4 1,2,3)

especially
1(2)(pQ) ++ 42!16 .diag block(4214.42 4,42!4,4214)

* . Suppose in the general came that
"I

K (3"4'(P,Q) 4+ 4n1 . (3.12)
n 4

n

By definition of (2.1) and (3.8),

K(L t -:+l p,,) -" * dtiag block(Kl, 1,K2,2 1 .. • K4n,4n )

where each Ki t  is a 4 x 4 matrix. More precisely

1dia at n ,4 n 4 ), (1 - 1n2,3)
K,() block(4n [ #4 n4(i)l(pQ) +# dag bok44 ... , 1 ,20

%+ t.0wo
... ... ... ... (3.13)

I
31+t)(p,Q) " diag block(4 n+l4 .... 4n a.° ....,4 n,4

t.0

where the term 4n  a t  is the (j + 1)-th block, (j 1,2,..., 4n - 1) in particular
t-0

-10-
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n+t PQ 4n+1

therefore for any n 1#2.... (3.12) hold.

Supposea*A (1jC

a 6A ,4(-1+i An-1,0' i - 1,2,3,4

By (3.9) we know

P(J)1P(a) -f K.Ji(a,Q)V(Q)dg 0 (.14)

Dy.0(.13), (3.14) we obtain

P,~jir(a) - 4n-I f F(Q)dQ r ~..... 1  (Q)di (3.15)

* for J < 3(1 -1) and.7P~I(J(a) in4 fl~ 7(Q) dQ - 2 -f P(Q)aQ (3.16)

for J 31.

Fo Wr J 31 -2, 31-1 we have

(3-2 2
P F(a) - (A f F(Q)dQ + f F(Q)dQ) (3.17)

n n-JA
n,4 9 14 n4(L-1)+in44 1

(i1I or 3) and

n~ n, 4 (Jt..l)

P (34-1) F(a) a e 1 n4t1)i 1,2

(3.18)

I 2 F(Q)dg + f F(Q)dQ). 1 3,4

in any case, from (3.15) to (3.19) we conclude

Pa A
a

where A e (A mi and a eA, JA I + when n* +



It is easy to check that

JK"f (pQ -d * (3.20)
n

Now (3.19), (3.20) imply the following theorem.

Theorem 3. For F a C(A) lip NPO)p - i,, o 0 j CIt2,...,304n-1

4n



4. On the Walsh system

Naturally there exist some different forms of definition which are equivalent. We use

area coordinates to define the two-variable Walsh function. Some notations follow the case

of the Bsar functions.

Wo(P) I- I for P 6 A

W(i(P) W(i)(Q) for P 6 A, i 1 2  4 n

wnl~nilt ( A for P •61 u A3
+I • t

(n 1) for P 68 U A4

2 n+ l-p fo r p e a1 2  u 4

W (2 -4 n +i) (P)forp@~ 
*

n+- for P G a3 U A4

(3.4 n+i).. A for P e AU A a
- ( -A for P 6A2 U A3  (4.1)

where

A= W(i)(Q), Q e A, Q - P, i - 1,2,3,...,4 n, n 0,1,2...

W()1 (P) s- Wo(P) - 1 for P 6 A

This finishes the definition of the sequence W.

Sometimes we prefer WL (i - 1.2,3,...,4 + l ) to w(J4m+i) with 1 - 4m + i

(1 - 1,2,...,40, j - 0,1,2,3).

At a point of discontinuity, the values of these functions are taken as the average.

Figures 2 and 3 show the Walsh sequence when n - 0,1.

Before the discussion of the orthogonality of the Walsh system we introduce the

Hadamard matrix (121,141, p. 207).

The Radamard matrix is a square array whose elements consist only of +1 and -1 and

Of whose rows (and columns) are orthogonal to one another. Obviously the lowest order

nontrivial Hladamard matrix is of the order two, viz.

-13-



H2 11 J (4.2)

Higher order metrice@ whose orders are powers of two can be obtained from the recurrent

relationship

H n - *24.3)

where • denotes the direct or Kronecker product and n is a power of two. The direct

product means replacing each element in the matrix by the H2 . With the help of the

Hadamard matrix the one-dimensional Walsh function can be defined [l. In the two-

dimensional case we should use the 4 K 4 matrix

4 H 2 0 H2

and get the recurrent relationship

HN - H/4 a H4 . (4.4)

The Hadamard matrix (4.4) corresponds to the Walsh sequence (Wi) (i -

* for a given N.

.-'i Figures 2 and 3 show the Walsh sequence associated with the Hadamard matrix.

In Figures 2 and 3 black areas represent +1, white areas -1. The following

triangle shows a certain order.

-4

-14-
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2. A
(1)) (3) (4)

-I

W12) + + + -
n -0 -:H 4

W14) + . +

(where we omit I in these elements of the Hadamard matrix)

Fiqure 2

.a.

-15-



w () w ) A 1 A "12

"-I

-11) *. + ++ .. *+ ++ .+ + + + ++ +
2 W

• ~ ~ ~ ~ ~ 3 4) W15) ++--+ ) -- +4

W
( )  

. . .+ +- .+ + -+ +- . +
2

W2
5

) + + + + + + + +

W
(6) + -+ - +-+ + -- -+ + - +

w(8) . .. -- . . . . . ., . -- .- . .0 . . nH iH42

W( )  + - + - + -+ +-++ - + -
( 1 1)  

. . . . . . . . .. . . . . . .

- (124 ) ++-.+ + -- + -+ - -++-

W2

2 + + + + + + + + N4 H
W2

W2
W(

14 ) 
. + - + - .+ - + - + - + + - + -

W( 15) . + + .. . . + + - . + + ++ - .

W( 1  + - + - + + - + - +

Figure 3
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now we notice that

t= 1

is the best L2-approximation to a given function F from

i :- spanlw)

where

U i :- ~ F(P)WV(P)dP
A

Hence it is convergent to F if F is in L2 , since ; n  is dense in L2. i.e.

Theorem 4. if F 6 L 2(6), then lim IF - P FN2 - 0.

Since N - M n and from Theorem 3 we get the following theorem.

Theorem 5. Let F e C(A), P4n be L2 -projector onto 
M
4n on A, then

list IF - Pn Ff- o.
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